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Abstract as time, energy usage, data storage available, and position
(see [5] for a more detailed description). However, there

For a given problem, the optimal Markov policy are some compelling reasons for keeping the plans simple:

over a finite horizon is a conditional plan contain-
ing a potentially large number of branches. How-
ever, there are applications where it is desirable
to strictly limit the number of decision points and
branches in a plan. This raises the question of
how one goes about finding optimal plans con-
taining only a limited number of branches. In
this paper, we present an any-time algorithm for

e There is a need for cognitive simplicity — plans must
be simple enough that they can be displayed easily,
and understood and modified by both Earth scientists
and mission operations personnel.

e Plans must undergo very detailed analysis and simu-
lation using complex models of illumination, energy

optimalk-contingency planning. Itis the first op-
timal algorithm for limited contingency planning
that is not an explicit enumeration of possible
contingent plans. By modelling the problem as
a partially observable Markov decision process,
it implements the Bellman optimality principle
and prunes the solution space. We present ex-

consumption, thermal characteristics, kinematics, and
terrain. There is limited time to do this analysis, so
plans must be kept structurally simple in order to ex-
pedite this process.

There is limited communication bandwidth and lim-
ited storage on board the rover, so there is an advan-

: . . . tage to keeping plans small.
perimental results of applying this algorithm to

some simple test cases. ) o )
As a result, we are interested limited contingency plan-

ning. More precisely, we would like to be able to compute
the optimalk-contingency plan for a problem — that is, the

1 INTRODUCTION . 2 .
optimal plan containing: or fewer contingency branches.

Markov decision process¢sDPS) provide a powerful the- In general, the problem of contingency planning is known
oretical framework for planning under uncertainty with to be quite hard [11], an&-contingency planning is no
probabilities, costs and rewards [15]. In this framework,exception. Ifk = oo, k-contingency planning reduces to
the optimal solution to a problem is an optinpallicy, that  finding the optimal policy. It = 0, k-contingency plan-

is, a rule specifying the action to perform for each situa-ning reduces to stochastonformantplanning, where we
tion we could possibly be in. For a finite planning horizon, must find the best unconditional sequence of actions [9].
this policy represents eonditionalor contingentplan with  One can argue that limited contingency planning is harder
a branch for each possible situation that might be encourthan both conformant planning and searching for the opti-
tered during execution. Therefore, the optimal contingenmal policy. First, the search space of conformant planing
plan may be large and complex, since it may contain a largéthat is, the set of all sequences of actions) is exponentially
number of branches. smaller than the search spaceketontingency planning

L L .. (the set of allk-contingency plans). Second, although the
There are applications where this size and complexity is éet of all policies is usually larger than the set of fail

significant drawback. Consider, for example, the problem__ . . . .
. . : contingency plans, dynamic programmimgp) techniques
of constructing daily plans for a Mars rover. There is a great L .
oL . . .~ “are able to significantly prune the search for an optimal
deal of uncertainty in this domain, concerning such things_ .. ; , S e
policy by using Bellman’s optimality principle. However,

*QSS Group Inc.

to our knowledge, there is no previous algorithm that is



able to implement Bellman’s optimality principle for lim- Hyafil and Bacchus encoded conformant planning as a
ited contingency planning. The problem is that the classieomDP. We then move on ta-contingency planning, fol-

cal Markov state is insufficient: knowing the best limited lowed bybalancedk-contingency planning. In Section 3
contingency plan from time + 1 to the horizon for each we further generalize this to arbitrakycontingency plan-
state we could be in at time+ 1 does not help to find the ning. In Section 4 we present experimental results compar-
best plan from time to the horizon. In fact, the action ing okP against a brute force search technique for finding
performed at timg may bring us no certainty about the k-contingency plans. Finally, we review related work and
state at timeg + 1, and the best plan for an uncertain ini- conclude.

tial state may be different from the best plan in each state.

However, the belief-state borrowed from partially observ-1.1 CONTINGENT PLANS

able Markov decision process@MDP) theory [6, 10] , that

is, a probability distribution on the original state, is a suf- This paper addresses a series of variants of the limited con-
ficient statistic to allow e>P approach to the problem of tingency planning problem. In general, we are looking for
limited contingency planning. This is the basic principle of optimal tree-shaped plans, the simplest form being confor-
the algorithm presented in this paper. mant plans, which are simple sequences of actions without
branches. This choice may seem a little odd since there
LS ) .. _are more compact types of plans or policies, such as finite
problem of planning in an unobservable environment: IIm’sta’te controllers. However, there are reasons to prefer tree-

|t|ng(]j.onetzelf t;) unc?pd|t|ofn{ar: plans 'St e?utwatlhentt .to d's.'lshaped plans in some application domains. For instance,
carding the obsefvation ot the current state that 1S avally, \he pmars rover domain, resources are monotonically de-
able at each time step. The first algorithm to exploit this

creasing along each possible trajectory, so that a state is

fact performed heuristic search through the belief SPACR aver visited twice. Moreover, the action the rover executes

{ﬁ 4]'t Inr.?t(_aad of uilng tlielln:anl’(sl optlmalltly lprln(_:|ple, must depend on the resource available. ThereforsA
ese techniques (w en they tackle ttimal planning requires that plans have finite horizon and do not contain
problem) rely on admissible heuristics to prune the searc ops

space [4]. Recently, Hyafil and Bacchus used the best so-
lution techniques foromDPs to solve stochastic confor- Optimal k-contingency plannings the problem of finding
mant planning problems [9]. In this approach, conformantan optimal tree-shaped plan with (at mdst)ranch points.
planning is modelled as a fullyon-observable Markov de- We consider three variants of this problem:

cision procesgNOMDP), which is a particular case of a

POMDP. As Hyafil and Bacchus point out, the drawback general k-contingency planning: in the most general
of this approach is that it requires computing optimal so- ~ case, we are looking for the best plan with at most
lutions for states that may be unreachable, but its strength & branch points overall;

i.s th"?‘t it prunes the search space by using Bellman's OP~linear k-contingency planning: we try to find the best
timality principle. For sevgral test bed problems, Hyafil plan with at most branch points, all of them on one
and Bacchus show that this approach outperforms a CSP trajectory through the plan. That is, the plan structure

algorithm that is able to do some reachability analysis but is a main line of actions with simple branches attached
cannot prune the search space. Moreover, the superiority toit. and no branches on the branches

of the POMDP approach becomes apparent as the size of

the problems grows. balanced k-contingency planning: we are looking for
the best plan with at mogtbranch points in each pos-
sible trajectory through the plan. That is, the largest
possible plan structure is a balanced tree Wwiklianch
points in each path from the root (initial time) to a leaf
(planning horizon). So, there are actually more than
branch points over the whole plan.

Conformant planning is well known to be equivalent to the

In this paper, we presemiptimal k-contingency planning
(okpP), an incremental algorithm for optimal limited con-
tingency planning. As in [9], we userOMDP framework

to model the problem, which allows using Bellman’s op-
timality principle to speed up the search. The difference
is that we must encode the number of branches allowed in

the state description of tOMDP. In effect, this amounts  Athough the balanced plan structure is a bit contrived, it
to keeping multiple copies of trrRomDP corresponding 10 s seful for presenting our algorithm sincep takes its
different numbers of branches allowed. When we choose tgimplest form in this case.

make an observation in om®MDP, we drop into &#OMDP

with fewer branches allowed. When all the branches are

used up, we end up in ttromDPfor the conformant plan- 2 OPTIMAL BALANCED

ning problem as used by Hyafil and Bacchus. E-CONTINGENCY PLANNING

VXe star:t by .;pemfymg the notion of contm?ent pr:an ur;se‘jOur formalism uses severabmpPs defined over different
throughout the paper. In Section 2, we first show OWstate, action and observation spaces, so it is important to



understand the role of eagtomDpP. The firstrombPwe  where S° = S; A° = A4; Q° contains only one ele-
introduce, M, represents the planning problem in the clas-ment, o?, that basically say8 can’t see anything infor-
sical sense. In this paper, our goal is to find optimal continmative”; T%(s,a,s’) = T(s,a,s’), R%(s,a) = R(s,a),
gent plans for the procesd. M can be a fully observable andO°(a,s’,0%) = 1forall (s,a,s’) € S x A x S.

MDP, which we see as a particular case ab@mbp. In As for anyPomDP [10], the optimal solution oft/° over

our framework, it means that we can observe exactly thet\ - ; : P )
. : he finite horizonH can be determined in finite time using
current state each time we decide to branch. In the general

case (whef/ is not anvioP), we have only noisy observa- value iteration(v1), which is a form of dynamic program-

tions for branching decisions. Later, we introduce severa] 'Y (oF). Starting from the planning horizof, we pro- .
% . ; ceed backward through time to construct a value function
otherpomDPps, {M"* : k > 0}, obtained by transforming

i ) : V? for eacht € {0;1;... H}. The valueV;’(z) represents
the original process/ in such a way that an optimal so- the expected reward we get by executing an optimal confor-
lution to M* is an optimalk-contingency plan foR/. So, P getby g b

eachM* representthe problem of--contingency plannin mant plan for the starting beliefover the planning horizon
in M P P gencyp 9 t. In the particular case of theompp MY, the equations

of vI are the following (the superscript O of thé and @
The planning problem for which we want to find opti- functions is a reference th, the number of branch points
mal contingent plans is modelled as thembpP M = in the plan):
(S,A,Q,T,R,0), whereS, A and( are the (finite) set Vi(z)=0, (1)
of states, actions and observations (respectivélyis the
transition probability7T’(s, a, s’) is the probability of mov-
ing to states’ if we execute actior in states; R is the
reward function:R(s, a) is the (expected) reward for exe-
cuting actiona in states; and O is the observation prob-
ability: O(a, s, 0) is the probability of observing € Q
when an e(:xecutiZJn of actionleads to state’. In this sec- Q¢ (@) = (Z (s)R(s, a)> + Vi (Bo() - (3)
tion, we assume that the observation probabilitied/ofio s€S
not depend on the last action executed, and we denote b§?, (x) represents the belief posterior to actiorand ob-
O(s', 0) the (well defined) probability of observinge Q  servationo?, given the prior belief:. It is given by Bayes’
when arriving ins’ € S. We relax this assumption in Sec- ryle:
tion 3.3. If M is a fully-observablevDP, then2 = S and u N Dosesx(s)T(s,a,s")
O(s',s') = 1forall s’ € S. o0 (@)(s) = - : )
The problem we tackle is this section is the following: Since we do not make any observation at all, whether the
given M, H, and a probability distribution over the initial original process\/ is aPOMDPor anMDP does not influ-
statez(s) (the initial belief), find the best contingent plan ence in any way the optimal solution of conformant plan-
where there are (at most)branch points in each possible ning. Note that the observation $etand the observation
trajectory through the plan. The optimality criterion usedfunctionO are not used anywhere in the equations above.

is the classical expected cumulative reward (discounted % actical implementations ofi exploit the fact that the

not) up to the planning horizof’: value function is always a piecewise linear convex func-
H tion of the beliefz. The functionsV,’(-) andQ?(-,a) are
ZWtT(t) \ 3301 ) represented as finite sets@fvectors each of them corre-
t=1 sponding to a linear function of. V.2 and@? are then de-
7(t) is the reward received at timeand~ € [0,1] is the  fined as the supremum (max) of the set of linear functions
discount factor. that represent them. All operations in equations (2) and (3)

First that ‘ ‘ b h reduce to manipulation and production@fvectors. The

gs ' we_assEme abwe mdus crea ﬁ tc))ne rr]anc. Or €3Gt ofa-vectors are regularly purged of vectors represent-
N servat|o_n that can be made at each branc po[nt (so, ﬂ?ﬁg linear functions that are optimal nowhere in the belief
branch points aréO|-ary in aPoMDP, and|S|-ary in an

) S . space. Many algorithms differ only in the way they purge
MDP). We show how to relax this constraint in Section 3.2. ges of,,-vectors. Although the belief space is continuous,

all the computation is finite [10, 6].

and, forallt € {0,1,... H — 1}:

V) () = max [Q7 ()], @)

E

2.1 CONFORMANT PLANNING
The value function constructed when solvibdf up to the

Whenk = 0, the problem is that of conformant planning: planning horizonH contains the expected reward of the
we must find the best unconditional sequenceHbfac-  best conformant plan in each possible initial belief state,
tions. As Hyafil and Bacchus [9], we model the stochas-and for each planning horizon less than or equal/toTo

tic conformant planning problem as a completely non ob-get the optimal plan for a particular starting beligf (for
servablempp (NoMDP) MY = (S, A% Q0 T RO OY)  instance, the certainty of being in a given state) and horizon



H, we must simulate a trajectory by always executing theonce in each trajectory. The other actiens A are called
optimal action for the current belief state, which requiresordinary actions.
monitoring the belief state along the trajectory using equa-
tion (4). Since there is only one possible observation aDbservations: Formally, Q' = Q. However, useful
each step, there is always only one possible belief at thebservations can be made only through the observe-and-
next step. So, the trajectory can never brahde could  branch actiom?. All other actions provide a non informa-
as easily extract the optimal conformant plan for anothetive observation. To model this, we select arbitrarily one
starting belief and/or another planning horizor: H. All  observation of the original process, we renamé’jtand
the information that is important and hard to calculate is inwe use it to represent the non-informative observation pro-
the value function, which is computed only once.drP,  duced by all actions different fromr®. Observed after an
we do not need to extract any plan before having reachedrdinary action: € A, 0? means'l can't see anything in-
the levelk where we decide to stop. teresting”, and when it is observed aftet’, it has the same
semantics as in the original process
2.2 1-CONTINGENCY PLANNING
Effects of ordinary actions: The stategs,0), s € S,
Similarly, the optimal 1-contingency plan is the optimal so- represent an absorbing subset, that is, we cannot get out
lution of aPompP M = (S, AL, QY T1 R O'). Mtis  of this subset once we enter it (remember that only or-
constructed by duplicatinyy/® and adding aobserve-and- dinary actions are possible in such states). All the tran-
branchaction between the two copies 81°. Thus, each sition probabilities, rewards and observation probabilities
states € S of the originalPOMDP M is represented twice involving only such states are defined as M°. The
in M. One copy represents beingdrbefore the plan has only way to get out from states of typg, 1), s € S,
branched, and the other represents beingafter the plan is through the observe-and-branch action. The transi-
has branched. The observe-and-branch action induces &ion probabilities, reward and observations involving only
irreversible transition from states of the first type to statesstates of the typés, 1), s € S, and not the observe-
of the second type. As fdr = 0, the problem is completely and-branch actiona®®, are also defined exactly as the
non-observable, except that the observe-and-branch actidransitions, rewards, and observationsff. That is:
allows making an ordinary observation as specified in thel'*((s, k), a, (s',k)) = T(s,a,s’), R ((s, k),a, (s',k)) =
original POoMDP M, and conditioning the next actions on R(s,a,s’), andO"(a, (s', k), o?) = 1, forall (s, k, a,s') €
this observation. Ifd/ is anmMDP, then the observe-and- S x {0;1} x A x S.
branch action sees the current state exactly. Formally:
Effect of the observe-and-branch action: executing ac-
States: S' = S x {0,1}. The pair(s,k), s € S and tion a®® in state(s, 1) leads with certainty to statés, 0),
k € {0,1}, represents being inand having possibility of with the same number of time-steps to go. This action pro-
using the observe-and-branch actiotimes in the future. ~ vides no reward and produces an observation following the
Each(s, 0) may be seen as an elementf the state space observation probability of the origin@lombr. Formally:
of the conformant planningompp M°, T'((s,1),a%,(5,0)) = 1, R'((s,1),a*, (s,0)) = 0, and
O'(a®, (s,0),0) = O(s,0), for all (s,0) € S x Q.
Belief states: The number of branch points that are still o
available for the futurek, is always known with certainty. 1 he fact that the observe-and-branch action is instanta-
All the uncertainty on the statés, k) of M comes from neous mlght make f[he_ solution Ml_ with vI look a I|ttle_
the uncertainty on. Therefore, a belief state far/* is a bit complicateda priori. However, it turns out that opti-

pair (z, k) wherez is a probability distribution oves and mization over a finite horizon is straightforward. First, for
ke {0’ 1}. all x and allt < H, the value of belief statér, 0) at timet

in M1 is equal toV,?(z) in M°. In other words, the result
L 1 ob ob o of the computation at level 0 (equations (1) through (3))
Actions: A" = AU {a®}, wherea®” is the observe-and can be reused as is, it gives the value of each belief state

branch action.a® is executable only in statés, 1), s € (z,0) of M atallt € {0,1,... H}. Then, if we denote by
S. a°® is a specialnstantaneousction: executing it does Vl’ Yo '

. ! ) () the value at timé of belief (z, 1) in M, thenvi is
not increment time. As shown below, it can be used onlysummarized by the following equations:

It is also possible to simulate trajectories by following point- e (z) =0 (5)
ers froma-vectors at time to a-vectors at time + 1 established H IR

when solvingM°, instead of maintaining the current belief. How-

ever, this technique appeared to be much slower in the context gind. forallt € {0,1,... H — 1}:

oKP with £ > 0, because it does not allomot building a branch

for observations that are impossilgiven the current belieflur- ob
ing plan extraction. Vi () = max {Q%(x, a®), max [Q%(% a)] } . (6)



with a copy of SY connected to thék — 1) level of M*~!
by the observe-and-branch action. All the equations of the

1 _ R vy (e 7 previous section can be re-used by replacing superscript 1
Q:(z,a) <Zx(s) (s’a)> Ve (Boo (@) (7) by k and superscript 0 by — 1. That is:

seS
for all a € A (using equation (4) to calculafg?, (x)), and Vi(z) =0, (12)
Ql(x,a) = Z Q}(x,a,0) , (8) Vi¥(z) = max {Qf(m,a"b), max (QF (z, a)}} , (13)
0€EQ a€
ob
Qi(x,a,0) =) 2(s)0(s,0V By (2)) , (9 Qf(w,a) = (Z z(s) R(s, a)) Vi (B () (14)
seS seS
where B¢” () is the posterior belief after observing Qy (z,a”) = ZQf(%aob,o) ’ (15)
given by Bayes'rule: pyr
. o . aob
B )s) = ZE0E0) g QE@a0) = 3 a()0( oV T (B (@) - (16)
Z ses
Note that if the original problem is anpPp, then equations  If the solution ofAZ7*~! is known, then the solution af/*
(8) through (9) simplify as: requires only one pass of through states at levél (that
is, stategs, k), s € S), readinga-vectors inV,*~! to eval-
Ql(x,a®) = Zx(s)VtO(xs) ) (11) uate the observe-and-branch action. Once the value func-
s€s tionsV/* are determined, we can easily extract the best (bal-

anced)-contingency plan for a given initial belief by sim-
ulating a trajectory im/*. When the observe-and-branch
So, a practical solution ol requires (i) having solved action is used, the trajectory branches and one branch for
MY in advance; and (i) one (backward) pass/othrough ~ each possible observatienc 2 must be built by simulat-
stateg(s, 1), s € S, following equations (5) to (11). During ing a trajectory inM/*~*. This is why the algorithm pro-
the calculation o', we reada-vectors in the solution of ~ducesbalancedcontingency plans: at each branch point
M?° to evaluate the observe-and-branch actions. Once that levell < k, each exiting branci{which is in fact a
value functionV’! is calculated, we can extract the optimal tree) may contain up tb— 1 branch points (equation (16)).
1-contingency plan for a given initial belief, by simulat- ~ Therefore, each trajectory through the plan tree may tra-
ing a trajectory inM*. As long as the observe-and-branch verse up td: branch points. As previously, the algorithm
action is not used, the trajectory may never branch. If atloes not have to use all the branch points allowed if there is
some point the-valuesQ} indicate thata®® is the opti-  no utility to be gained by doing so. Therefore, the version
mal action for the current belief state, then a branch poin®f OKP presented in this section produces an optimal plan
is added to the plan. We must then calculate the postewith at mostk branch points in each trajectoty.

rior belief for each observation € 2 using equation (10)

(that is, for each state € S if M is anmpP). Finally, 3 EXTENSIONS

the optimal branch for each is constructed by simulat-

Ing a (non-b_ranghmg) trajectory in/”. Because™ is . p may easily be adapted to other variants of the limited
not prese_nt inV/°, no more branch points can be addeqcontingency planning problem.

Note that it may happen that the observe-and-branch action

is never used during the travel through'. It shows that
there exists a conformant plan that is at least as good aeé'l TYPES OF PLANS

the best 1-contingency plan, so there is no need to USE 8frst, the algorithm can search for other types of plans.
obserw_a-and brar_wh action. Not_e also that, one more times, instance, we can search for the optimal linéar
the optimal solution of\/* contains the value of the best
k-contingency plan for alk € {0,1}, all possible initial
beliefszq, and all planning horizons less than or equal to
H. Note that the plan extraction phase of this versiogp is
exponential ink. This is an artifact due to the particular variant of
the problem addressed. What we call a “balanc@dntingency”
plan contains in fact a number of branch points exponential in
Therefore, extracting such a plan from the solution offtba&bpP

In general, thek-contingency planning probleni: (> 2) s exponential ink. This is not the case for the other variants of
may be modelled asroMDP M builton M*~1 by adding  the algorithm presented in Section 3.1.

where beliefz; gives states with probability 1.

contingency plan as defined in Section 1.1, that is, the
best plan with (at most} branch points, all of them on

2.3 BALANCED k-CONTINGENCY PLANNING



one trajectory through the plan. In this case, each level Pr(QY | z) Z Z O(s,o0)

1 € {1,2,...k} of M* contains|(2| observe-and-branch s€S ocq

actions,{a%’,0 € Q}. The semantics of2’ is “observe, w 2()S 0 O, 0)

branch, and use thie— 1 remaining branch points in the B (x)(s') = OEZQ' A

branch associated with observatigh Equation (13) be- o

comes and similarly forQ% (x, a2, \ Q). Note that there are
212l — 2 such actions (subsef¥), which is a considerable

V;k(l‘) — max {Hlaéi [Qf($7 agb)] >m3;§( [Qf(m,a)]} , number in most cases.

o€ o€ The equations above correspond to balaricedntingency

where planning. If we are looking for other types of plans, then
we must create a different observe-and-branch action for

Qf(z,ad) = QF M(z,ad0)+ > QP(z,a2,0') . each possible branch conditiamd each possible way of

o'eQ\{o} distributing the remaining branch points in the stemming

branches. However, the number of ways of distributing
Similarly, we can tackle the gener&atcontingency plan- branch points is greatly reduced (compared to the formulas
ning problem (at most branches over the whole plan with- of Section 3.1) when we use compact branch conditions.
out any other constraint), by adding multiple observe-and¥or instance, if we look for the optimal plan with at most
branch actions at each level 8f*. Here we must model % binary branch points overall, then there atél — 2 dif-
one observe-and-branch action for each possible way tterent branch conditions, but onkyways to distribute the
distribute thek — 1 remaining branch points in tH&| ex- & — 1 remaining branch points in the two exiting branches.
iting branches. Therefore, the number of different observeTherefore, the total number of observe-and-branch actions

and-branch actions required at lewek at levelk is (2191 — 2)k.
(19| + k —2)! The computational price of compact branch conditions can
I be greatly reduced in the particular case where the obser-

vation o represents a numerical valéieln this case, we
So this variant ofokp is somewhat impractical for large can focus the search on a particular kind of branch condi-
k. As shown below, a way to limit the complexity of the tion based on threshold. Each branch point is defined by

algorithm is to change the branch conditions. a thresholb” € O. There are two exiting branches: one
corresponds to observing a valoec O less than or equal
3.2 BRANCH CONDITIONS to o”, and the other corresponds to values greater than

oT'. Thus, the total number of different branch conditions
The algorithm of Section 2 creates one particular branchs |Q| — 1. As there are only two exiting branches, there
for each observation € €2 that can possibly be made after are onlyk ways to distribute the remaining branch points.
the observe-and-branch action (although it considers onlyherefore, the total number of observe-and-branch actions

the observations that are possible given the current beliedt level k. of the strictk-contingency planninggoMDP is
during plan extraction). In other words, there may be up toonly (|| — 1)k.

|©2] branches stemming from each branch point of the plan.

In some variants of the limited contingency planning prob-3 3 GENERAL POMDPS

lem, we may want to limit the number of branches exiting

from each branch point by grouping several observationginally we can relax the hypothesis on the observation
together. probabilities of the originaboMDP M. In Section 2, we as-
okP can be adapted to any kind of branch condition. Forsumed that t/he observation probal_oilities depend only on the
instance, if we want the plan to use binary branch pomtsamvaI states’ (that is,0(s", o)), while the general formal-
then we must create one observe-and-branch aaglofor Ism of POMDPs assumes that they also depend on the last
each possible way to partition the observation@ento  action O(a, s ', 0)), which allows aricher model of sensory

two non-empty subset®’ and<2 \ €. Equation (13) be- actions. The problem is that, Wh.en we move 'to th|§ more
comes general framework, the observation probabilities:8f in

M*, previously defined a@* (a°®, (s, k—1),0) = O(s, 0),

are not well defined anymore. The observation following
the use of the observe-and-branch action depends on the
action performed at the previous time step, which violates
Qf (x,a8)) = QF (x,ad, V) + Qf (z, a8y, 2\ ), the (first order) Markov property.

V() = max { g [QF o) max (@]}

where SActually, it is not necessary that the observation is a numeri-
cal variable. It is sufficient that there be a complete order defined
QF(x,a, Q) = Pr(Q | )V}~ 1(599’ (z)) , over it.



One way to deal with this situation is to introduce the lastsize of the search space, and howp is able to prune the
action executed into the Markov state df*. Another, search using Bellman’s optimality principle.

equivalent, way to model this is as follows: lnstea_d .OfThe first problem we used is a variant of the tiger problem

adding N, observe-and-branch actions to the preexistin . : Lo
. . 10]. In this problem, the agent is standing in front of two
|4] actions at each levél (whereN is the total number of gEjoo]rs (eft ar?d right). Behir?d one door Iiegs a dangerous

pranch condmpns _and ways .Of distributitg-- 1 remain- tiger, and there is a reward behind the other door. There-
ing branch points in the exiting branches), we cresie ; h it I . |
(new) copies of each actiane A. Each copy corresponds ore, t. ere are t\.N(.).d' ere'n.t world staFesggr— eftand

: tiger—right The initial position of the tiger is unknown,

to executinga, an_d then branching the plan foII(_)wmg th_e and the initial probability on the tiger position is uniform
protocol of a particular observe-and-branch action. For in-

stance. in the case of balandedontinaency planning with over the two doors. The agent has three possible actions:
' gencyp 9 opening one of the doorsen—lefandopen-righj, or lis-

Lﬁ'ﬁg% bera}g]g:]gzgtlz i(tiscg] S‘z{?ti's?h?’sg%? ;Iﬁ)lclgatizse)ad?ening to try to guess where the tiger iisten). Thelisten
Py PIES)- action does not change the state of the world, it costs 1 unit

“ repr_esents executln_g not discarding the regultlng Ob'. of utility, and provides a noisy observation that can take
servation, and branching the plan based on this observation

. b . ~ two possible valueshear-tiger—leftand hear-tiger—right
fpllowmg the proto?ol of action” of Section 2. The equa If the state of the world ifiger—left then the probability of
tions ofvi become:

observinghear-tiger—lefis 0.85 and the probability of ob-
i . P servinghear—tiger—rightis 0.15. Similarly, the probability
Vi () = max {glg} Qi (z,a)] ,?ea%( Qi (z,a)] } ’ of hearing the tiger to the right when the tiger is actually to
the right is 0.85. Opening the door behind which the tiger
lies provides a “reward” of -10. Opening the other door
brings a reward of +6. After opening a door, the problem is
resetin its original state (that s, the agent is brought back in
Q,’f(x, a,0) = front of the doors and the new position of the tiger is drawn
k—1 /1o at random uniformly). Given these parameters, the optimal
Z 2(s)0(s,0) (R(s, a) + V7 (B3 () conformant plan over a horizon &f time-steps is tdisten
s€S H times. At each step, it provides the reward with cer-
5 , z(s)O(a, s, 0) tainty, while opening an arbitrary door (we are not allowed
B;(z)(s') = - 7z to condition the choice of the door on the result of previous
Jisten actions) brings the expected reward: 0.5 (-10) + 0.5
(6) = -2. The discount factor is set to 1 (no discount).

Qf(xaa‘) = ZQ?(I7(~150) )
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Note that we are not concerned with this issue if the origina
processV is a fully observableiDp.
We ranokpP and plan enumeration on the tiger problem
4 EXPERIMENTS for different plgnning hprizonﬂ and Ievglsk:. Eig. 1
shows the optimal contingent plans obtained with a sam-
ple of small values fof{ andk. Fig. 2 shows the evolution
of the value of the optimal contingent plan as a function
of k and H. Finally, Fig. 3 shows the evolution of the to-

We implementedokP using Cassandra’®OMDP solver
available on the Internét.We used the witness algorithm

[10] to solve okP's multiple level POMDP. The results ) time taken by the algorithm as a function/ofind H.
presented in this paper concern the varianoe that  thaqe results clearly show the exponential blow-up of the

searches for balanced contingent plans (Section 3.1), buildsg 5 space and havkp is able to resist it by efficiently

ing @ branch for each possible observation (Section 3.2} ning the search. In this example, Bellman's optimality
We focus on two simple test bed problems. principle allows a drastic reduction in the complexity of the
As Hyafil and Bacchus stressed for the particular cas&earch thatlargely compensates for the fact that we have to
k = 0, okp for generalk is able to prune the plan space deal with (belief) states that are unreachable.

(using BeIIman’.f, optimalit_y principle),. but it computes (thg The second problem is a small maze world due to
value of) the optimal plan in every belief state at every hori-i o .stmann and Zilberstein [8] and represented in Fig. 4.

zon, while we may be interested only in a single initial be- |, this problem, the agent starts from the location marked
lief and the belief states reachable from it. To measure thg i an s and must end-up in the goal location G. The agent
value of this trade-off, we implemented in the same envi-.;, use 4 actions, N, S, E and W, that allow it to move 1 or
ronment aokPp, an algquthm the}t systematically searches; positions in the desired direction with equal probability

anq evaluateg ,a_" pos§|ble cqntlngent plans for a given (unless a wall blocks the way). The goal state is absorbing.
horizon, and initial belief, taking into account only reach- 1o gnservation available (when we decide to branch) is

able belief states. Its performance gives an indication of the, presence or absence of a wall on each side of the square

“http://www.cs.brown.edulresearch/ai/pomdp/ that defines the agent’s location. Thus, there are 8 different
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possible observations (and 11 states). The agent gets a zeFfyure 3: Execution time abkp and plan enumeration in
reward at every step except when it enters the goal stateéhe tiger problem.

Therefore, there is no time pressure on the agent: it does

not get a bigger reward for getting to the goal earlier, and it

must simply maximize its probability of reaching the goal agent to the North and South with probability 0.1. As in
inside of the planning horizon. Fig. 4 contains an examplg-orstmann and Zilberstein's maze, the agent can perceive
of an optimal contingent plan for this problem. Fig. 5 andonly nearby walls. The algorithms execution time for this

6 show the evolution of the value of the optimal plan and ofproblem is presented in Figure 7. These results are consis-
the execution time of the two algorithms on this problem.tent with Hyafil and Bacchus’s. They show that the plan

As for the previous example, the trade-off adoptedlayp enumeration technique is faster tharp in this particu-
is highly valuable. lar problem. This may be explained by observing that, for

small values of the planning horizon, there are much less
reachable states than the total number of states. Therefore,
the reachability analysis of the plan enumeration algorithm

Finally, we experimented on theRED-10x 10 problem de-
signed by Hayfil and Bacchus [9] to show the limits of the

POMDP approach to conformant planning. This problem allows saving more time than Bellman’s optimality princi-

is constituted of an empty X1.0 square room. The goal o 1y,vs us in OKP. It suggest that the best algorithms wil

gtate is a corner of thg room and the start state staFe IS obtained by combining reachability analysis and Bell-
fixed location in the middle of the room. The four actions man’s optimality principle

available, N, S, E, and W, allow the agent to move of one

position in the grid, but there is noise in the direction of

this move. The actions N and S move the agent in the de® RELATED WORK

ignated direction with probability 0.9, and to the West and

East directions with probability 0.05 each. Similarly, the A number of probabilistic contingency planning systems
E and W action succeed with probability 0.8 and move thehave been developed that can deal with partial observabil-
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ity, including C-Buridan [7],DTPOP [14], Mahinur [13],
P-Graphplan [3],c-MAXPLAN [12], ZANDER [12], and
heuristic search through the belief space [4, 2]. Since the
limited contingency planning prob!em may be r.nodelled. as'Figure 7: Execution time obkpP and plan enumeration in
a poMDP, all of them can potentially be applied to this

I ; .~ the GRID-10x10 problem.
problem. In a sense, the contribution of this paper is to
show how to cast the limited contingency planning prob-
lem as a problem of planning with partial observability. Nt qy,cing the number of branch points remaining as a fully
all of these_systems attemp.t to.maX|m|ze the expectgd ré&bservable component of the state.
ward. For instance, the objective for many of them is to
find a plan with a success probability exceeding a given
threshold. They can potentially be used to find a limited® CONCLUSIONS
contingency plan that succeeds with a minimum probabil-
ity. Also, by raising the probability threshold, one could We presentedkP, a new algorithm that is able to find opti-
in theory force any of these systems to continue searchinghal solutions to a variety df-contingency planning prob-
for an optimal plan or policy. We believe that it should be lems. The basic principle abkp is to recognize that the
relatively easy to do this for the partial-order planners C-belief state borrowed frormomDPs contains all the infor-
Buridan [7],0TPOP[14], and Mahinur [13]. For these sys- mation necessary to allowp solution to limited contin-
tems, all that would be required is to incorporate a countegency planning. We have shown experimentally that the
into the planning algorithm so that no more thabranches time gained by pruning the plan space using Bellman’s op-
could be added to the plan. FormaxPLAN [12] andzaN-  timality principle may largely compensates for the fact that
DER [12] one could write exclusion axioms that prohibit we have to deal with (belief) states that are unreachable,
more thark observation axioms from appearing in the plan. but that this trade-off is not be beneficial in all cases. This
However, if there are possible observation§kil) exclu-  work, as well as some recent work on conformant plan-
sion axioms would be required. Finally, heuristic searchning, shows that Bellman’s optimality principle is a pow-
through the belief space [4, 2] can be applied directly to theerful tool for manyoptimal planning problems (where we
PoMDP M* of k-contingency planning. It amounts to in- have to find the best plan over a set plans), not just search-

0 2 4 6 8 10 12
Planning horizon



ing for the optimal policy. By showing how to cast the lim-
ited contingency planning problem as a problem of plan-
ning with partial observability, this work allows the appli-
cation of many previous algorithms to limited contingency
planning.
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